HOME
プログラム
国立大学法人 群馬大学
JREC-IN

研究者

重粒子線治療研究プログラム

中野 隆史中野 隆史 プログラムディレクター
職名:教授
○研究室:腫瘍放射線学教室
○関連サイト:

腫瘍放射線学教室
http://radiology.dept.med.gunma-u.ac.jp/
重粒子線医学研究センター
http://heavy-ion.showa.gunma-u.ac.jp/index.php

田代 睦
職名:准教授

研究テーマ

「重粒子線治療の照射精度向上のためのシステム開発および物理工学的研究」 

・呼吸性移動臓器の照射精度向上に関する研究

移動に伴う標的のずれや、標的までのビーム経路の構造が変化することによる、標的への線量不足や周辺正常組織への過剰線量を検証し、最適な治療計画や照射条件を得ることを目指している。

・患者位置決め時の体内移動の定量化および可視化に関する研究

 照射直前に取得する直交2方向の2次元X線画像と治療計画時の3次元CT画像から得られる擬似X線画像との2D-3Dオートマッチングによる患者位置決め技術を応用し、患者体内の移動や変形に対して、各所の移動量を定量化・可視化する技術開発研究を行っている。

・患者状態の変化に即時対応する照射システムの開発

日々の患者状態の変化に対して、その線量分布への影響、治療計画の変更最適化、変更に対応した治療照射をオンデマンドで可能とする照射システムの開発を目指している。

主要業績

論文

Tashiro M, Ishii T, Koya J, Okada R, Kurosawa Y, Arai K, Abe S, Ohashi Y, Shimada H, Yusa K, Kanai T, Yamada S, Kawamura H, Ebara T, Ohno T, Nakano T. Technical approach to individualized respiratory-gated carbon-ion therapy for mobile organs. Radiological Physics and Technology, 6: 356-366, 2013.

Tashiro M, Minohara S, Kanai T, Yusa K, Sakurai H, Nakano T. Three-dimensional velocity mapping of lung motion using vessel bifurcation pattern matching. Medical Physics, 33: 1747-1757, 2006.

・田代 睦. 群馬大学重粒子線医学センターのご紹介. 放射線化学, 92: 33-37, 2011.

・Tajiri S, Tashiro M, Mizukami T, Tsukishima C, Torikoshi M, Kanai T. Margin estimation and disturbances of irradiation field in layer-stacking carbon-ion beams for respiratory moving targets. Journal of Radiation Research, 2017 Feb 23:1-9.

・Ebara T, Shimada H, Kawamura H, Shirai K, Saito J, Kawashima M, Tashiro M, Ohno T, Kanai T, Nakano T. Dosimetric Analysis Between Carbon Ion Radiotherapy and Stereotactic Body Radiotherapy in Stage I Lung Cancer. Anticancer Research, 34(9): 5099-5104, 2014.

・Sakama M, Kanai T, Kase Y, Yusa K, Tashiro M, Torikai K, Shimada H, Yamada S, Ohno T, Nakano T. Design of ridge filters for spread-out Bragg peaks with Monte Carlo simulation in carbon ion therapy. Physics in Medicine and Biology, 57: 6615-6633, 2012.

学会発表

Tashiro M, Ishii T, Koya J, Okada R, Kurosawa Y, Arai K, Abe S, Ohashi Y, Shimada H, Yusa K, Kanai T, Yamada S, Kawamura H, Ebara T, Ohno T, Nakano T. Technical approach to individualized respiratory-gated carbon-ion therapy for mobile organs. JRC2014, Yokohama, 2014.

Tashiro M. Respiratory motion management for carbon-ion therapy at GHMC. The 2nd International Symposium of Gunma University Program for Leading Graduate Schools, Maebashi, 2014.

受賞

・Radiological Physics and Technology, Doi Award in Radiation Therapy Physics, Japanese Society of Radiological Technology, Japan Society of Medical Physics, April 13, 2014.

・Poster Award (Radiation Therapy), The 4th Japan-Korea Joint Meeting on Medical Physics and The 5th Asia-Oceania Congress of Medical Physics, Sep. 30, 2005.


新美 敦子新美 敦子
職名:助教

研究テーマ

重粒子線治療はその効果の高さから、近年注目を集めている革新的ながん治療法です。従来の放射線治療で用いられるX線やγ線では照射により引き起こされるDNA損傷の大部分が二本鎖切断(Double Strand Break; DSB)であるのに対し、重粒子線照射では塩基損傷(base damage)や一本鎖切断(Single Strand Break; SSB)を伴った複雑なDSBが多数作成されると考えられています。これら複雑なDSBは「クラスターDSB」と呼ばれ、通常のDSBよりも修復されにくいDNA損傷であると考えられています。重粒子線治療では、クラスターDSBをがん細胞内に生じさせることにより、効果的にがん細胞を死滅させます。しかしながら、実際に生体内でどのようなクラスターDSBが生じているか、その詳細に関してはほとんど明らかになっていません。そこで我々は超解像度光学顕微鏡Delta Vision OMXを用いて、生きた細胞におけるクラスターDSBを可視化することを目標としています。重粒子線照射により実際にDNA上に生じた損傷を可視化し、DNA修復反応を分子レベルで解明することにより、重粒子線治療の更なる向上と改善を目指したいと考えています。

主要業績

論文 (* equal contribution)

・Isono M, Niimi A, Oike T, Hagiwara Y, Sato H, Sekine R, Yoshida Y, Isobe S, Obuse C, Nishi R, Petricci E, Nakada S, Nakano T, Shibata A. BRCA1 directs the repair pathway to homologous recombination by promoting 53BP1 dephosphorylation. Cell Rep. 18:520-532, 2017.

新美敦子、柴田淳史. 重粒子線照射に特徴的なDNA損傷形態の研究 放射線生物研究 51:216-229, 2016

Niimi A, Yamauchi M, Limsirichaikul S, Sekine R, Oike T, Sato H, Suzuki K, Held KD, Nakano T, Shibata A. Identification of DNA double strand breaks at chromosome boundaries along the track of particle irradiation. Genes Chromosomes Cancer. 55:650-660, 2016.

・Oike T*, Niimi A*, Okonogi N, Murata K, Matsumura A, Noda SE, Kobayashi D, Iwanaga M, Tsuchida K, Kanai T, Ohno T, Shibata A, Nakano T. Visualization of complex DNA double-strand breaks in a tumor treated with carbon ion radiotherapy. Sci Rep. 6:22275, 2016.

Niimi A, Hopkins SR, Downs JA, Masutani C. The BAH domain of BAF180 is required for PCNA ubiquitination. Mutat Res. 779:16-23, 2015

Niimi A, Chambers AL, Downs JA, Lehmann AR. A role for chromatin remodellers in replication of damaged DNA. Nucleic Acids Res. 40:7393-7403, 2012.

・Ogi T, Limsirichaikul S, Overmeer RM, Volker M, Takenaka K, Cloney R, Nakazawa Y, Niimi A, Miki Y, Jaspers NG, Mullenders LH, Yamashita S, Fousteri MI, Lehmann AR. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells. Mol. Cell 37: 714-727, 2010.

・Bienko M, Green CM, Sabbioneda S, Crosetto N, Matic I, Hibbert RG, Begovic T, Niimi A, Mann M, Lehmann AR, Dikic I. Regulation of translesion synthesis DNA polymerase eta by monoubiquitination. Mol. Cell 37: 396-407, 2010.

Niimi A, Brown S, Scott A, Kannouche PL, Yasui A, Green CM, Lehmann AR. Regulation of proliferating cell nuclear antigen ubiquitination in mammalian cells. Proc Natl Acad Sci USA. 105:16125-30, 2008.

Niimi A, Limsirichaikul S, Yoshida S, Iwai S, Masutani C, Hanaoka F, Kool ET, Nishiyama Y, Suzuki M. Palm mutants in DNA polymerases alpha and eta alter DNA replication fidelity and translesion activity. Mol Cell Biol. 24: 2734-46, 2004.

学会発表

Niimi A, Limsirichaikul S, Nakano T, Shibata A. Analysis of DNA synthesis during homologous recombination in G2 cells after ionizing irradiation. The 10th 3R Symposium, Matsue, Japan, Nov. 2016

Niimi A, Nakajima NI, Yamauchi M, Limsirichaikul S, Oike T, Sato H, Jeggo PA, Held KD, Nakano T, Shibata A. Analysis of cluster DNA double strand break formation using high-resolution microscopy. 10th Quinquennial Conference on Responses to DNA damage, Egmond aan Zee, Apr. 2016

Niimi A, Oike T, Isono M, Hagiwara Y, Yoshida Y, Takahashi A, Nakano T, Shibata A. Visualization of heavy ion induced cluster DNA double strand breaks formation using the super-resolution microscopy. 15th International Congress of Radiation Research, Kyoto. Japan, May 2015

Niimi A, Downs JA, Lehmann AR. A role of BAF180, a chromatin remodeller during post replication repair. International Symposium on Xeroderma Pigmentosum and Related Diseases:Disorders of DNA Damage Response, Kobe, Japan, Mar 2014.

Niimi A, Downs JA, Lehmann AR, Masutani C. A role of chromatin remodellers in replication of damaged DNA. The 8th 3R Symposium, Awaji, Japan, Nov 2012.

Niimi A, Downs JA, Lehmann AR. Analysis of chromatin structure during post replication repair. 9th Quinquennial Conference on Responses to DNA damage, Egmond aan Zee, Netherlands, Apr 2011.

Niimi A, Downs JA, Lehmann AR. Analysis of chromatin structure during post replication repair. The 6th International Forum on Oxidative Stress and Aging, Nagoya, Japan, Sep 2010.

Niimi A, Downs JA, Lehmann AR. Analysis of chromatin structure during post replication repair. International Conference on Radiation and Cancer Biology, Nagasaki, Japan, Feb 2010.

Niimi A, Brown S, Green CM, Lehmann AR. Regulation of PCNA ubiquitination. Gordon Research Conference Genetic Toxicology, Oxford, UK, Jul. 2007.

 

 

Raj Kumar PARAJULI
職名:ポスドク

研究テーマ

Development of Compton Imaging System

Characterization of cancer with respect to its surroundings tissue is a very important aspect of current medical imaging systems, which can ease the medical diagnosis and treatment strategy. Even with the current imaging techniques like PET and SPECT, the problems remain unsolved because of the imaging principles; requirement of a mechanical collimator or coincident detection of annihilation gamma rays. Effective use of Compton cameras, which were originally developed for astronomy, could be a great innovation to overcome the current problems in diagnostic imaging because of its simultaneous imaging ability against wide energy range. Currently we are developing a 3-dimentional nuclear imaging system based on the high-tech Si/CdTe semiconductor cameras developed by Japan Aerospace Exploration Agency (JAXA). In the meanwhile we are also implementing our immense effort in enhancing the resolution and accuracy of current imaging technique followed by developing high speed imaging mechanism.

Radiation Measurement using RPL glass Micro-dosimeter

Heavy Ion Cancer therapy has been increasing worldwide due to its high linear transfer (LET) and unique dose distribution at Bragg peak with sharp increase of dose in well-defined depth and rapid fall-off beyond that maximum. In this research, we attempt to enhance the current system by developing a precise dose distribution measurement tool so called the micro-dosimeter, which is necessary to treat cancer with high accuracy minimizing the side effects. If we can develop and implement highly reliable radio-photoluminescence (RPL) glass dosimeter with size less than millimeters, it could be possible to visualize three-dimensional dose distribution. Therefore in this research we aim to develop micrometer sized radiation dosimeter for realizing convenient three-dimensional dose distribution evaluation method for radiation therapy.

・W. Kada, S. Kawabata, T. Satoh, M. Sakai, R. K. Parajuli, N. Yamada, M. Koka, K. Miura, O. Hanaizumi, and T. Kamiya, “Observation of Changes in Ion Beam Induced Luminescence Spectra from Organics during Focused Microbeam Irradiation”, Nucl. Instr. Meth. B, 2017(Peer Review,In Press)

・W. Kada, S. Kawabata, T. Satoh, R. K. Parajuli, N. Yamada, M. Koka, K. Miura, O. Hanaizumi, and T. Kamiya, “Development of High-speed Wavelength-dispersive IBIL Analysis and Imaging System Using a Multi-channel Photon-counting Spectrometer”, Nucl. Instr. Meth. B, 2017 (Peer Review,InPress)

・S. Kawabata, W. Kada, Y. Matsubara, T. Satoh, M. Sakai, R. K. Parajuli, N. Yamada, M. Koka, K. Miura, O. Hanaizumi, and T. Kamiya, “Micro-PIXE Analysis and Imaging of Radio-photoluminescence Glass Bead Microdosimeters”, Nucl. Instr. Meth. B, 2017 (Peer Review,InPress)

・R. K. Parajuli, R. Saruya, N. Akutzu, S. Miura, W. Kada, S. Kawabata, Y. Matsubara, T. Satoh, M. Koka, N. Yamada, T. Kamiya, K. Miura, and O. Hanaizumi, “Fabrication and Evaluation of Flexible Mach-Zehnder Waveguide Structure Embedded in a Poly(dimethylsiloxane) Thin Film using a Proton Microbeam”, Jpn. J. Appl. Phys., 55 (2016) 06GD01. (Peer Review)

・R. K. Parajuli, W. Kada, S. Kawabata, Y. Matsubara, K. Miura, A. Yokoyama, M. Haruyama, M. Sakai, and O. Hanaizumi, “ Evaluation of Radio-photoluminescence Spectra of Copper-doped Phosphate Glass Dosimeter Irradiated with Ionized Particles”, Key. Eng. Mat., 698 (2016) 163-170. (Peer Review)

・R. K. Parajuli, W. Kada, S. Kawabata, Y. Matsubara, M. Sakai, K. Miura, T. Satoh, M. Koka, N. Yamada, T. Kamiya, and O. Hanaizumi, “Ion Beam Induced Luminescence (IBIL) Analysis for β-SiAlON:Eu Scintillator under Focused Micro-beam Irradiation”, Sen. Mat., 28 (2016) 837-844 (Peer Review)

・S. Kawabata, W. kada, R. K. Parajuli, Y. Matsubara, K. Miura, T. Satoh, M. Koka, N. Yamada, T. Kamiya and O. Hanaizumi, “ Complex system of Proton Beam Writing (PBW) and In-situ Ion Beam Induced Luminescence (IBIL) Analysis using Proton Microbeam Probe for the Evaluation of Micrometer-sized RPL Glass Dosimeter”, Jpn. J. Appl. Phys., 55 (2016) 06GD03. (Peer Review)

・R. K. Parajuli, N. Sunaguchi, R. Tei, T. Iijima, and Y. Yamakoshi, “Characterization of nonlinearity of shear elasticity using local velocity mapping”, Jpn. J. Appl. Phys. 53 (2014) 07KF30. (Peer Review)

・R. K. Parajuli, R. Tei, D. Nakai, and Y. Yamakoshi, “Share wave imaging using phase modulation component of harmonic distortion in continuous shear wave excitation”, Jpn. J. Appl. Phys. 52 (2013) 07HF22. (Peer Review)

・T. Miwa, Y. Yoshihara, K. Kanzawa, R. K. Parajuli, and Y. Yamakoshi, “Tissue viscoelasticity measurement system by simultaneous multiple-frequency excitation”, Jpn. J. Appl. Phys. 51 (2012) 07GF13. (Peer Review)

・T. Miwa, R. K. Parajuli, R. Tomizawa, and Y. Yamakoshi, “Shear wave velocity estimation by virtual sensing array spectrum analysis”, Jpn. J. Appl. Phys. 50 (2011) 07HF07. (Peer Review)

学会発表

・77th Japan Society of applied Physics Autumn Meeting (JSAP 2016): 15th Sep. 2016, Niigata, Japan.

・28th International Microprocesses and Nanotechnology Conference (MNC 2015): 11th Nov. 2015, Toyama, Japan.

・76th Japan Society of applied Physics Autumn Meeting (JSAP 2015): 13th Sep. 2015, Nagoya, Japan.

・The 35th Symposium on Ultrasonic Electronics (USE 2014): 4th Dec. 2014, Tokyo, Japan.

・1st International Symposium of Gunma University Medical Innovation and 6th International Conference on Advanced Micro-Device Engineering (GUMI&AMDE 2014): 5th Dec. 2014, Kiryu, Japan.

・The 34th Symposium on Ultrasonic Electronics (USE 2013): 21st Nov. 2013, Kyoto, Japan.

・5th International Symposium Conference on Advanced Micro Device Engineering (AMDE 2013): 19th Dec. 2013, Gunma, Japan.

・The 33rd Symposium on Ultrasonic Electronics (USE2012): 14th Nov. 2012, Chiba, Japan.

・4th International Conference on Advanced Micro Device Engineering (AMDE 2012): 7th Dec. 2012, Kiryu, Japan.

・112th Japan Society of Medical Physics (JSMP 2016): 9th Sep. 2016, Okinawa Japan.

・Research Grant from “Gunma University Human Resources Cultivation Center” (HRCC) (2012~2013 -2 years.)

・Financial Support by “Tsuji Asia Scholarship Foundation, Sanrio” (April 2011~March 2013- 2 years)

・Full Scholarship sponsored by “Nepal Anti-Tuberculosis Association”(August 2003~July 2008- 4 years)

ページの先頭へ戻る